Galerkin Least Squares Hp-fem for the Stokes Problem Galerkin Least Squares Hp-fem Pour Le Probl Eme De Stokes
نویسنده
چکیده
A stabilized mixed hp Finite Element Method (FEM) of Galerkin Least Squares type for the Stokes problem in polygonal domains is presented and analyzed. It is proved that for equal order velocity and pressure spaces this method leads to exponential rates of convergence provided that the data is piecewise analytic. R esum e: Nous etudions la version hp d'une m ethode d' el ements nis mixte, stabilis ee par une formulation \Galerkin Least Squares", pour le probl eme de Stokes dans des domaines polygonaux. Si les donn ees sont analytiques cette m ethode donne des taux de convergence exponentiels pour des espaces de vitesse et de pression d'ordres polyn^ omiaux identiques. Version frann caise abr eg ee Pour la discr etisation \Galerkin" de la formulation mixte du probl eme de Stokes le choix des espaces discrets pour la vitesse et la pression doit se faire selon la condition de stabilit e de Babu ska-Brezzi. Toutefois, des espaces d'ordres polyn^ omiaux identiques pour la vitesse et la pression, les plus attirants pour l'impl ementation num erique, ne sont pas stables et peuvent produire des modes parasites lors de calculs num eriques. R ecemment, des m ethodes qui evitent ces probl emes de stabilit e sont apparues, et nous r ef erons a l'article d'aperr cu 5] et aux r ef erences ci-incluses a ce sujet. Ces techniques ont d ejj a et e appliqu ees a une multitude de probl emes, mais toutes ces approches consid erent la version h de la m ethode d' el ements nis. Comme la solution du probl eme de Stokes est typiquement analytique, la version hp de la m ethode d' el ements nis peut mener a des taux de convergence exponentiels 1]. Dans cet article nous pr esentons la version hp d'une m ethode stabilis ee, bas ee sur une formulation \Galerkin Least Squares", et nous montrons que la convergence exponentielle peut ^ etre obtenue, si la solution exacte poss ede la r egularit e requise. Partant de la formulation variationnelle (1) du probl eme de Stokes dans un polygone l R 2 , nous introduisons des sous-espaces discrets de version hp, V N;0 pour la vitesse, et M N;0 pour la pression, tels que M N;0 et V N;0 soient d'ordres polyn^ omiaux identiques et ne satisfassent pas la condition de Babu ska-Brezzi. Notre m ethode stabilis ee de type \Galerkin Least Squares" …
منابع مشابه
Newton multigrid least-squares FEM for the V-V-P formulation of the Navier-Stokes equations
We solve the V-V-P, vorticity-velocity-pressure, formulation of the stationary incompressible Navier-Stokes equations based on the least-squares finite element method. For the discrete systems, we use a conjugate gradient (CG) solver accelerated with a geometric multigrid preconditioner for the complete system. In addition, we employ a Krylov space smoother inside of the multigrid which allows ...
متن کاملLeast-squares Proper Generalised Decompositions for Elliptic Systems
Proper generalised decompositions (PGDs) are a family of methods for efficiently solving high-dimensional PDEs. Convergence of PGD algorithms can be proven provided that the weak form of the PDE can be recast as the minimisation of some energy functional. A large number of elliptic problems, such as the Stokes problem, cannot be guaranteed to converge when employing a Galerkin PGD. Least-square...
متن کاملAnalysis of Stabilization Operators in a Galerkin Least-Squares Finite Element Discretization of the Incompressible Navier-Stokes Equations
Abstract In this paper the design and analysis of a dimensionally consistent stabilization operator for a time-discontinuous Galerkin least-squares finite element method for unsteady viscous flow problems governed by the incompressible Navier-Stokes equations, is discussed. The analysis results in a class of stabilization operators which satisfy essential conditions for the stability of the num...
متن کاملA multiscale finite element method for the incompressible Navier–Stokes equations
This paper presents a new multiscale finite element method for the incompressible Navier–Stokes equations. The proposed method arises from a decomposition of the velocity field into coarse/resolved scales and fine/unresolved scales. Modeling of the unresolved scales corrects the lack of stability of the standard Galerkin formulation and yields a method that possesses superior properties like th...
متن کاملNumerische Simulation Auf Massiv Parallelen Rechnern Least Squares Methods for the Coupling of Fem and Bem Preprint-reihe Des Chemnitzer Sfb 393
In the present paper we propose least squares formulations for the numerical solution of exterior boundary value problems. The partial di erential equation is a rst order system in a bounded subdomain, and the unbounded subdomain is treated by means of boundary integral equations. The rst order system is derived from a strongly elliptic second order system. The analysis of the present least squ...
متن کامل